
Knowledge Based Neural NetworksTesting and Improving the KBANN AlgorithmTristan GrimmerDecember 1995AbstractArti�cial Neural Networks have a large learning time and fail to capitalize on any domain knowledge.The KBANN system is an attempt to reduce training time by creating a network that is initially consistentwith the domain knowledge. This network is then trained using backpropagation. For a reasonably simpledomain theory, the networks created by KBANN are relatively shallow (having few layers). When thedomain theory is only relatively complex the depth of the created network becomes large, and the timerequired to train this network increases. This problem with KBANN is tested by implementing a systemcapable of recognizing simple geometric shapes in a 7x7 array. The KBANN network is compared witha single hidden layer feed-forward network. Finally, a new, independently invented, system is tested.This new system, ShallowKBANN, keeps the small number of layers while still using the domain knowledge.SKBANN is found to outperform both other systems in terms of number of training cycles necessary toreach maximal generalization of the network. Finally, a suggestion is made on how to incorporate moredomain knowledge into an ANN. Often the rules in a domain theory can have a certainty associated withthem. It may be possible to incorporate this certainty factor into an initial network.1 IntroductionThis report intends to take a critical look at the KBANN algorithm and consider ways of improving it.The KBANN (Knowledge-Based Arti�cial Neural Network) algorithm implements a hybrid system. Thatis, it is an attempt to merge explanation-based learning, which can incorporate prior knowledge, with aninductive learning method, in this case a neural network. This is desireable since explanation-based learningrequires that the domain theory , in this case our prior knowledge, is sound and in some cases complete (see[Mit95, Chaper 6]). This knowledge base may not exist in the detail required and may have inconsistencies.Simulated Neural Networks, on the other hand, do not require this initial domain theory. They are capableof learning from noisy examples, and generalize well to unseen cases. The problem here, however, is thelarge learning time required to train the network.KBANN is an attempt to reduce this training time and avoid the problems that may be present in theinitial domain thoery. Usually ANN's have their initial weights and thresholds (unit biases) initialized tosmall random values. KBANN, however, creates a network that agrees with the domain theory initially.That is, some of the weights and thresholds are set to speci�c values so that the network reects the domaintheory. At this point the network is capable of classi�cation in much the same way as a rule based system 1.The KBANN system dictates the entire structure of the neural network: number of units in total, number oflayers, and number of links. The problem is with the number of layers generated (see [TS92]). A relativelysimple set of domain rules can lead to a network that is too deep to be trained e�ectively with, for example,the standard back-propagation algorithm ([RHW86]). This scenario is studied by comparing the trainingtimes of a KBANN net versus a simple 1-hidden-layer fully connected net. The number of hidden units ofboth networks was normalized to 11 in an attempt at a fair comparison.1The Incompleteness and possible unsoundness of the domain theory may be handled di�erently by di�erent ruled basedsystems. 1



As a potential solution to this problem, a third system (ShallowKBANN) is implemented and tested. Thissystem, which was developed by the author, only has one hidden layer but still manages to use the domaintheory to `initialize' some of it's hidden units as feature detectors. Those features which are most likely tobe of importance in determining the concept (in this case a shape) are given the largest thresholds and linkweights. This means that the more important features are harder to `unlearn' during the training process,while the less important ones, which may not even be necessary or correct, would be easily swamped by anyconicting training examples. That is, the units implementing these `less important features' could easilyconverge to recognize a di�erent concept if necessary. The development of SKBANN then leads us to thepossibility of mapping the certainty of rules in the domain base (if these certainties are available) into theinitial network. The validity of this mapping technique, however, has not been tested as it is beyond thescope of this experiment.The rest of this report is organized as follows:� Section 2: A general form of the KBANN algorithm is described.� Section 3: The domain in which the experiments will be carried out is described. It consists of simpleshapes that exist on a 7x7 grid. The initial domain theory is also introduced in this section.� Section 4: An initial KBANN network is created using this domain theory.� Section 5: A description of how to train and test a neural network using back propagation is given.The network simulator that was used in the experiments is introduced. The training data used in theshape domain is given as well as the validation data.� Section 6: Results from training the KBANN network are given.� Section 7: For comparison purposes, the results from training a standard fully connected neuralnetwork are presented.� Section 8: The SKBANN algorithm for mapping the domain theory to an initial ANN is described.� Section 9: Results for the SKBANN algorithm are given. These are compared to the KBANN resultsand the standard network results.� Section 10: The possibility of incorporating the certainty factors of the domain theory rules into theinitial network is described.� Section 11: Conclusions and possible limitations of the algorithms are given.2 KBANN with Disjunction
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In [Mit95] the KBANN algorithm is briey described for the case when all the variable free rules in theknowledge base occur only once (i.e. no disjunction). However, there is a more general form (see [TSN90]) that can handle both disjunction and negation. Although the algorithm is always presented as learning asingle concept, it is not too di�cult to generalize it to multiple concepts. The most general formulation willbe needed for this experiment. Figure 1 shows a schematic representation of how KBANN is supposed towork. The back-propagation algorithm for training the neural network is well documented (see for example[RHW86]) and will not be described here. The rules-to-network translation, however, is not so well knownand is described in full below.2.1 Step 1 Mapping the RulesBasically each unit of the generated neural net corresponds to a predicate. For example, lets suppose wehave the rule: A B ^ C (1)The network for this rule can be seen in �gure 2a. The value `w' beside the links represents the weighton that link. The value beside unit A is the threshold. If the sum of the inputs and the threshold is greaterthan zero then A `�res'. That is, the value of A is described by,
B C

A

ww

-(2w-w/2)

B C

A

ww

-(2w-w/2)

w w

d1 d2

w w w w

B C D E

A  -w/2

-(2w-w/2) -(2w-w/2)

D

w w

E F

-(3w-w/2)

w

A

B C not D

w w
-w

-(2w-w/2)

(a) (b) (c)

A

B C

D

E

(d) (e)

G      H      I

Figure 2: An Example of KBANNA = � 1 if Bw +Cw � (2w �w=2) > 00 otherwise (2)Note that this does not accurately depict how a unit works as implemented in a real neural network, butis used for illustrative purposes only. As we can see A will only `�re' if both B and C have value 1. Assumingthat the inputs, B and C, are either 0 or 1. This correctly models the rule. There seem to be 2 generalforms for the equation that gives the bias value of unit A. In [TSN90], it is given as �(nw � �), where n3



is the number of mandatory antecedents. Phi is a value between zero and w that was found empirically towork well. This does not make sense. For a value of phi either side of w=2 an assumption is being madeabout which way the weights are likely to be modi�ed during back propagation. The direction taken will bea reection of the accuracy of the rule. There seems to be no reason to expect, on the majority of the units,that a weight change will be one way or the other. For this reason, the bias function given in [Mit95] willbe used. It is �(nw�w=2), right in the middle. It should be noted that the value 3 for w was found, againempirically, to work well.Now lets assume a new rule is added: B  D ^E ^ F (3)The network will now look like �gure 2b. As can be seen, it is very easy to add another layer to thenetwork. Another potential problem is the fact that having many positive antecedents should not make thatrule `more important'. Given the assumption that the training method employed 2 on the network cannotmake arbitrarily large weight adjustments during a training cycle it can be concluded that the units withthese larger biases and link weights will be harder to modify. This is not desireable.Now lets use a rule with negation (�gure 2c).A B ^ C ^:D (4)Nothing really changes except that the weight on the `not' link is set to �w. Since only the mandatoryantecedents are taken into account during the bias calculation no changes are needed. That is, the prohibitoryantecedents ( the ones with the negation ) are ignored. It can be easily veri�ed that the network is still validand that `D' must be zero for A to be activated.To add disjunction to the network some extra units (that do not correspond to a predicate in the rules)will have to be added. Suppose the following two rules are true:A B ^ C (5)A D ^E (6)Then �gure 2d shows how this can be handled. The added units, d1 and d2, are what can activate A.By setting the bias of A to �w=2 we ensure that if any of d1 or d2 or d3 or . . . or dn �re that A will be abovethe threshold and will �re. The units d1, and d2, are then given weights like any other unit.Finally, dealing with more than one concept that has common antecedents is not a problem. Suppose:A B ^ C (7)D  B ^E (8)Then all that needs to be done is link A and D to their common antecedent B as in �gure 2e. The weightsand biases can be computed in the normal manner.
2It is not necessary to use backpropagation. It's just the norm.4



2.2 Step 2 Adding More UnitsSince it is possible, and even likely, that there are predicates missing from the knowledge base that arevital to the determination of a concept, new units must be added to the network. These take the form ofadditional input units. For example, in �gure 2b the units G, H, and I have been added.
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(b)(a) Figure 3: Adding Links2.3 Step 3 Adding More Links and Perturbing the NetworkThese new units must be linked in. The most common way to do this is to order each unit according to it'smaximum path length from an input unit (which corresponds to a predicate with no antecedents). All unitsthat have the same `depth' are put in a layer. For �gure 3b we have:Unit A Max Path Length (level) 3Unit C Max Path Length (level) 2Units d1,d2,B Max Path Length (level) 1Units D,E,F,G,H,I,J,K Max Path Length (level) 0Each layer is then fully connected and each added link is assigned a weight of zero. Of course if a linkis present due to the previous rules-to-network mapping then it is left untouched. The `bottom' layer ofunits (i.e. the inputs) will contain any added units. These are linked in at this time. Figure 3a shows anetwork with the added units but not the added links. Figure 3b shows the same network organized intolayers and linked. The purpose of these added links is simply to facilitate the learning process when theback-propagation algorithm is applied. They represent extra degrees of freedom in the search for minimalerror. It should be noted that there is now a link between C and B, basically allowing C's output to dependon B's. This makes sense intuitively since B is a more general concept. That is, it is directly inuenced bythe inputs. By dropping each unit as close to the inputs as possible we allow each unit to be as general aspossible since it will be used by more units at higher levels.For a more thorough introduction to KBANN see [TSN90]. The basic idea has been covered so it is nowpossible to move on and describe the domain in which the experiments will be carried out.5



3 A Domain of Simple PicturesAll the concepts that will be learned in these experiments are simple shapes that live on a 7x7 grid of pixelsthat are either o� or on. The noise free representations of these shapes are shown in �gure 4.
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       Coordinate SystemFigure 4: The Shape ConceptsThe domain theory that will be assumed can be seen in �gure 5.This domain theory is neither complete nor correct. It takes the form of a number of clauses much likeProlog rules. Note the inclusion of negation of some of the predicates and the inclusion of disjunction inthe form of multiple rules with the same head. As can be easily veri�ed, the rules do capture some of theimportant features necessary to each shape. However, it is not a complete speci�cation, as not all pixels inthe array are referenced. Furthermore, it can be seen that even if supplied with noise free inputs, a uniquedetermination of the shape is not possible with the given rules. For example, rule 7 and 8 both have thesame antecedent, so if this antecedent is true then it will not be known whether we are dealing with shape7 or shape 8.Not only is it incomplete, but there are errors as well. Rule 5 allows a determination of shape 4 whenit is entirely possible that A34 is on. This conclusion would therefore be incorrect. These problems withthe knowledge base highlight the need to involve a connectionist approach. In the next section a KBANNnetwork is created using the rules of �gure 5, so it is worth while having a close look at the rules.4 The Shape KBANN NetThe details of working out the KBANN net for the shape knowledge base are not worth repeating. In essenceit was just a mechanical application of the rules given in section 3. Figure 6 shows step 1: mapping therules. Note that the weights are set to either plus or minus 6. This larger weight size was necessary due tothe network simulation tool being used. It is suspected that the errors in the oating point arithmetic usedby the simulator are not kept bounded by a constant factor.The network, after adding the extra units and links, can be seen pictorially in �gure 7. This �gure showsthe activation level at the bottom of each unit and the unit number on top. As can be seen, unit 59 has anonzero activation. This should not be the case. Since the network has not been trained or perturbed bysmall random numbers there is no satisfactory explanation for this discrepency. It is highly suspected thatit is a manifestation of oating point error. Perhaps the simulation tool (SNNS is used in this experiment)divides two near equal numbers causing catastrophic cancellation. It is also, of course, possible that thereis some rather more obvious bug in the simulation software. Regardless, the task of determining the originof this error by debugging the source code has proven to be nontrivial and will be left to the creators of the6
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simulation tool (see [MV95]). Figure 7 shows the network recognizing shape 1, which it is capable of doingcorrectly given the rule base.
Green Links:  Weight +6
Red Links: Weight -6
Blue Links: Weight 0Figure 7: The Shape KBANN Net With Added Links And Units5 Training a Network Using SNNSSNNS is the Stuttgart Neural Network Simulator. It was downloaded and compiled to run on an AlphaDEC 3000. Although there are several bugs and missing features in the software, it is general enough to doeverything needed. All simulations will be done using SNNS.In order to train a network the weights and bias values of all links and units must be perturbed to allowfor symmetry breaking during training ([RHW86]). In this case an � of 0.001 is used. That is, a random valuebetween 0 and 0.001 is chosen and then either added or subtracted from the weight/bias. A new randomvalue is chosen for each weight/bias perturbation.The training process involves supplying the back-propagation algorithm a number of input/output pairsfrom the training set. Let the training set have n training examples. Applying the back-propagationalgorithm to each of these examples constitutes what is known as a training cycle3. Usually many cyclesare necessary before the ANN starts to converge. It is the number of cycles that this report is concernedwith reducing. In [MV95] it is also noted that supplying the network with the training pairs in the sameorder for each cycle results in a larger number of cycles before the network converges. For this reason theinput/output examples will be randomly shu�ed before each cycle. Since SNNS supports this operation itis trivial to implement.3The term epoch is also common. 9



5.1 Stopping CriteriaNext, it is necessary to determine a stopping criteria. It is desireable to stop when the network generalizesbest to unseen examples 4. What can be done is to divide up the training set into an actual training set anda validation set. This approach is used here. The validation set can be considered the `unseen' test cases.What may happen can be seen in �gure 8.
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Figure 8: Stopping CriteriaIf training proceeds past the dotted line then the network is being overtrained and is simply specializingto recognize the shapes it is being trained with. The other possibility is that the two sets are related soclosely (even though they contain no input/output pair in common) that the performance just keeps onimproving. If this is the case then the stopping criteria will be a Mean Squared Error (MSE) of the outputsof below 0.05 5.The error metric used, as stated above, will be the MSE. The MSE is de�ned as:MSE = SSEN � k (9)where N is the total number of samples, k is the number of parameters being estimated, andSSE = NXi=1 e2 (10)The variable e is just the error (the di�erence between the estimated value and the true value). For example,suppose we want to know the MSE when 2 validation input/output pairs are supplied to the network. Thedata may look something like:Desired Output Network OutputPair#1 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.8 0.2 0.3 0.0 0.0 0.3 0.4Pair#2 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.1 0.5 0.9 0.1 0.1 0.0 0.2 0.4The `Desired Output' column is just the output for that training pair. The `Network Output' contains the4The SNNS user manual, [MV95], gives a more in depth explanation5This value was pulled out of thin air and should be customized for the particular domain and task at hand. Somespeci�cations may allow for larger values than others. 10



values that the network actually returned. For this hypothetical case N = 14 and the SSE will be:SSE = NXi=1 e2 = 0:12 + 0:22 + 0:22 + 0:32 : : :0:22 + 0:42 = 0:92 (11)In this case k = 7 since there are seven separate parameters that the network must predict each time.The MSE is therefore given as: MSE = SSE14� 7 = 0:131 (12)For a thorough discussion of why the MSE is a good error metric for this experiment see [HL87, pages188-192]. In general the MSE is a better indicator if the sample size, N is large. In our case the validationset will contain 28 input/output pairs yielding a sample size of 196 (since there are seven units per output).The value of k will remain at 7 since there are still only 7 parameters that the neural network is learning.That is, the seven output units.5.2 Training and Validation DataAs explained above, there is a pool of input/output pairs that will be divided into a training set and avalidation set. This initial `pool' of values can be seen in �gure 9
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Figure 9: Pool of Input/Output PairsThe pool was divided into a set of 28 validation pairs and 35 training pairs. The reason for more trainingpairs is because the noise free descriptions of each shape concept were forced into the training set. This makessense as we can assume that these are the given concepts that require learning. The remaining 56 pairs weredivided randomly between the training and data sets with the constraint that each set of pairs describing11



the same shape would be divided evenly between the data and training set6. That is, it is undesireable to,by chance, put all the examples of a particular shape in only one of the sets. The following table shows thedivision. V stands for validation set while T for training set.Reference Number 1 2 3 4 5 6 7 8 9Set T T V V T V T V TReference Number 10 11 12 13 14 15 16 17 18Set T T T V T V V T VReference Number 19 20 21 22 23 24 25 26 27Set T V T T V V T V TReference Number 28 29 30 31 32 33 34 35 36Set T V T T T V V V TReference Number 37 38 39 40 41 42 43 44 45Set T T T V T V T V VReference Number 46 47 48 49 50 51 52 53 54Set T T T V T T V V VReference Number 55 56 57 58 59 60 61 62 63Set T T V T T T V V V6 Training Results: The KBANN NetworkDue to the large depth of the network the training did not go as well as expected. The standard backprop-agation algorithm was used with a learning rate of 0.2. This rate was found by trial and error to work thebest. Figure 10 shows the generated error curve. Figure 11 shows an example of the network failing torecognize one of the training set examples! It can't tell whether it is shape 2 or shape 5.
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Training CyclesFigure 10: Learning Graph KBANNIn order to remedy this situation a `new' KBANN net was created with a few more hidden units, in orderto alleviate the apparent bottle-neck before the outputs. Figure 12 shows it's structure and �gure 13 it'slearning curve.The improvement is negligible. The over-all performance of these deep KBANN networks leaves much tobe desired. As will be seen, a one hidden layer vanilla network outperforms readily.6The process involved the ipping of a real coin, and resulted in an equal probability of T or V in each position. It wasensured that the constraint did not skew the distribution. 12



Figure 11: Failure of KBANN
Figure 12: New KBANN Net
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7 Training Results: The Vanilla NetworkIn order to be fair about the comparison between the standard KBANN network and a simple one layernetwork the same number of units will be used. There were 11 hidden units in the KBANN network, so 11will be used in the vanilla network (a fully connected network). It should be noted, however, that there isthe real possibility that the number of units as speci�ed by the domain theory may be too few to be able togeneralize to the concepts that need learning 7. It may also be the case that the domain theory divided theworld up into too many small, and perhaps irrelevant, pieces; which would allow the vanilla net to performeven better. Figures 14 and 15 show the structure and learning curve of the vanilla network. Initially allweights and thresholds were set to zero (before the mandatory perturbation). The learning rate was found(empirically) to be most e�ective at 1.5.
Lower numbers are activation amountsFigure 14: Trained Vanilla Network
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MSE Figure 15: Vanilla Network Training CurveAs can be seen the network is able to correctly identify any shape from the validation set. And it7This is likely what happened in our case 14



managed an MSE of under 0.05 for both data sets in under 40 training cycles. For many tasks, however, afully connected network using Back-Propagation can be improved upon readily8. The question becomes canour rule based knowledge be encoded into a shallow neural network?8 The SKBANN Algorithm8.1 Main AssumptionsThe SKBANN Algorithm is a method for translating the domain knowledge into an initial neural network inmuch the same way as KBANN. The domain knowledge must take the form of `Prolog-like' rules (variablefree) , just as with KBANN. The structure of a SKBANN network is the same as a single hidden layer fullyconnected network, as with our `vanilla' network. The di�erence is that some of the links from the inputsto the hidden layer will have speci�c weights and the some of the hidden units will have speci�c thresholds.That is, some of the hidden units will be initialized to recognize certain important features of the input.Central to the developement of SKBANN are the following assumptions:1. Rules in the database that are used9 often have a high degree of con�dence10 associated with them.2. Rules that are used closer to the concepts being learned are more important.To explain these assumptions assume the following domain knowledge exists:r1 : A D ^Cr2 : B  C ^Er3 : D F ^Gr4 : F  H ^ Ir5 : G J ^Kr6 : C  L ^Mr7 : E  N ^OAlso presume that the concepts being learned are A and B. These rules can been seen in a tree in �gure 16.
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JFigure 16: A tree of rulesAs an example of assumption 1, There is more con�dence in rule r6 than in, say, rule r7. This is because,as can be seen in the tree, C is used twice while while E only once. It should be noted that even if rule r18Consider, for example, feature detectors and time-delay neural nets.9That is, the heads of these rules occur as either mandatory or prohibatory antecedants of other rules.10A measure of how likely it is that the rule is actually valid for the domain.15



was A D ^ :C it would not a�ect the con�dence in r6. It is the fact that the rule was used at all that isimportant, not whether the negation was used or not.As an example of the second assumption, rule r7 is more important than both rules r4 and r5. This isbecause it occurs at a lower level. That is, it has much more direct e�ect on the concepts we are trying tolearn.These assumptions are just that, assumptions. For certain domains they may hold while for others theymay not. For example, the assumptions probably would hold for the rules that doctors use in diagnosingpatients. A rule that is relied on heavily (i.e. is used a lot) will have a high degree of con�dence associatedwith it. The rule simply would not have survived as long as it did if this were not the case. For example,the rule:Conscious Talking ^ Hand-is-Movingis probably a pretty safe bet, and in diagnosing a patient this sort of rule would be used all the time.The second assumption would also hold in this domain. If we are trying to tell if the patient is consciousthen the rule:Talking Mouth-moving ^Word-sounds-presentis more important than some obscure rule many layers deep. These assumptions will be presumed tohold in the shape domain of this experiment. The SKBANN method uses the notion of strength to initializethe weights and thresholds of some of the hidden units. A unit with more strength is one in which it isharder for the backpropagation algorithm to `untrain'. That is, units that require large changes to their linkweights and thresholds before giving substantially di�erent responses are stronger. In SKBANN, units withhigh con�dence and importance values will be stronger. With the assumptions and terms now de�ned, theSKBANN algorithm will now be introduced and applied to the shape rules given in �gure 5.8.2 Applying Shallow kBANNIt is assumed that the antecedents of each shape rule (rules 1 to 9) are important for the neural net to learnbecause if it can learn these it will be well on it's way to recognizing the shape (or concept, if this algorithmwill be applied more generally). The importance of each rule can now be determined. Imagine a layeringsystem where the most important concepts are placed at the bottom (call this layer zero). Of all 14 conceptsgiven by the rules (�gure 5) the most important are the ones we are trying to learn (i.e. the 7 conceptslabeled shape 1 to shape 7). Clearly any concept that directly a�ects rule 1 to rule 9 will also be of fairlyhigh importance. These shapes are the heads of rules 10 to 12 (The intermediate level rules in �gure 5).Basically, it is desireable to let each rule `fall' as much as possible towards ground zero. It may be asked whyrule 13 is at layer 2 while rule 12 is at layer 1. The answer is that the head of 13 is one of the antecedents ofa rule in layer 1. That is, rule 11 incorporates the importance of 13. Rule 12, however, is capable of `falling'to one above zero since none of it's antecedents are heads of a rule in the same or lower level. In summary,level zero depends on levels 1, 2, and 3 (letting 3 be the inputs). Level 1 depends on levels 2 and 3. Andlevel 2 depends only on level 3. Just put each rule as low as possible while maintaining these dependencies11. It may also be helpful to draw the tree of rules as shown in the previous section.Now that we have some notion of the importance, the con�dence can be worked out: The more times aconcept is used the more vital it is (and therefore the more vital the rule that describes it). Note that itdoes not matter if the negation is used. It's the fact that it was referenced at all that adds to it's con�dence.So, for an overall strength level we get: I = �(c=l) (13)11The method described here generalizes easily to more rules and more layers16



where I is the strength, c is number of times it's used, l is the level, and � is a constant of proportionality.For this experiment � will be set to 1. It may also be desireable to add a constant to c, giving the ability tocontrol how much `default weight' is given to the con�dence rating.
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Figure 17: SKBANN (handi-capped) Weight and Bias ValuesNow that the strength of each rule is known, we can map each rule to a hidden unit of the network. Eachhidden unit will basically implement the corresponding rule. Since, in this case, there are more hidden unitsthan shapes being learned we could simply make each hidden unit of the network `recognize' a particularshape. This approach, although it works for this problem, may not be applicable if there are more conceptsto learn than hidden units permitted. It has been decided to handi-capSKBANN 12 in this experimentso that it is not allowed to map any of the 7 (level 0) rules directly into 7 hidden units. In fact, if there aremore hidden units than concepts to learn then there is no need for the importance or con�dence ratings. Allthat would need to be done is �nd the atomic predicates (inputs), assign weights of w to those links, andassign a threshold of �(nw � w=2) to that unit (where n is the number of atomic predicates).In general, if there are more concepts than hidden units then the rules would be ordered by strengthand the highest m rules would be mapped to the network; where m is the desired number of hidden units.If a network with more hidden units than concepts is desired (like in our case of 7 concepts because of thehandi-cap) then additional weight zero /bias zero units can be added. For this experiment 11 hidden unitsare desired so 4 units will have threshold zero.Now, what makes a rule stronger in terms of the actual network? Well, a unit with higher strength willnot be a�ected as easily by changes in the weights of it's input links or it's threshold. This reminds us ofhaving larger thresholds and input link weights ( a variation in weight of threshold will a�ect such a unitless).Since there will only be one hidden layer of units, the rule that the hidden unit is supposed to implementwill have to be expressed in terms of the 49 inputs. This is just a case of �nding out what all the atomic12SKBANN is suspected to work extremely well for this domain if we didn't.17



predicates of each concept are. For example, the concept that is the head of rule 11 has atomic predicatesA17, A77, A11, and A71.Finally a formula can be given for the weights of the input links (from the base dependencies, or inputs)to a hidden unit: w = I=n (14)where I is the strength of the unit being connected to and n is the number of base dependencies.This yields the same `midpoint' equation for the unit's threshold:t = �(I �w=2) (15)Figure 17 shows a table of what is being done.9 Training Results: The SKBANN NetworkFigure 18 shows the network that was created after it was trained with learning parameter 1.5 (same asvanilla). The �rst 7 hidden units correspond , in order, to the 7 concepts in table 17. Figure 19 shows thelearning curve. As hoped, the network converges faster! Note that the SKBANN plot was placed directlyon top of the old Vanilla training curve so an easy comparison can be made. Although no research hasbeen done into expanding the SKBANN algorithm to multiple hidden layers, I believe it is not di�cult toaccomplish. The hard question would be `when is an expansion to more layers required?' not `How do we doit?' Another possible variation to SKBANN would be to weight occurances of a concept more if they occurin lower levels. That is, if one counts 5 occurances in level 1 it should be more signi�cant than 5 occurancesin level 8.
An test example from
the validation set works well.Figure 18: Trained SKBANN Net in Operation18
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Number Training Cycles Figure 19: SKBANN Learning Curve9.1 A Quick Look at the Hidden Units
First Trained Net Second Trained NetFigure 20: Two Separately Trained SKBANN NetworksIn order to con�rm suspicions that the weaker (less strong) units may converge to di�erent concepts, anumber of SKBANN networks were trained. In �gure 20 we see two of them recognizing the same `I' shape.As can be seen, the third hidden unit (which is activated) can not get out of recognizing it's respectiveconcept. This is because it is relatively strong (a weight of 5=4). However, the fourth hidden unit (whichrecognizes the two left most corner inputs A11 and A71), and similarly the �fth, have opposite activationsin each network. This is because, during training, they specialized to somthing other than what they wereinitialized to. This makes sense as they were weaker, having weights of 1=2 and 1=4.10 Incorporating More Domain Knowledge: Rule CertaintyThis sectoin, very briey introduces the possibility of mapping the certainty rating of a rule into an initialneural network. In some cases a measure of the con�dence that a certain rule is correct (or incorrect) may19



0 w 2w 3wT

T: threshold value with highest strength.Figure 21: Threshold position with respect to link weightsbe available. In [PMG95] the con�dence is de�ned as a value ranging from �1 (known false) to +1 (knowntrue) with 0 being no idea of the correctness of the rule. If a rule has a con�dence level of +1 then it'scorresponding unit should have it's threshold in a position yielding the highest strength.Figure 21 shows the case when there are 3 antecedants in the rule. Each link gets weight w and thethreshold will be set to (2w + w=2) if there is a certainty factor of 1 associated with it. As the certaintyfactor gets closer to �1 the threshold will have to be placed further away from the midpoint. A certainty of0 should coincide with one of the interfaces (that is, threshold values of either 2w or 3w in the diagram). Ifthe rule is known to be false, then the threshold could be assigned a value larger than 3w or less than 2w.Some sort of curve would have to be �t to map the certainty to the distance away from the midpoint.. Ifthe curve was linear then a certainty of �1 would map to 3w=2 or 7w=2. The question for further discussionis on which side of the midpoint should it be placed. The author wonders how a network that randomlychooses which side would perform.11 ConclusionsThis report communicated a set of experiments with Arti�cial Neural Networks. The applicability of theKBANN algorithm was studied and a new system which avoids producing large numbers of hidden layerswas tested. The new system outperformed both a vanilla back-propagation feed forward network and theKBANN network. The domain, although arti�cial, serves to demonstrate that applications do exist where theSKBANN algorithm outperforms the others. However, the general applicability of the SKBANN system hasnot been explored fully. One rather signi�cant failing in SKBANN is that it fails to specify unambiguouslyhow many hidden units should be used. It is this determination that can a�ect drastically the performanceof a neural network. That is, too many units cause too many degrees of freedom and the network will notgeneralize well, while too few units and the network may be incapable of representing the necessary conceptsand so will be impossible to train (see [Win92, pages 464-469] for a full discussion of this phenomanon). TheKBANN system, however, fully speci�es the structure of the network, and many researchers 13 claim thatthis is why KBANN networks are capable of generalizing so well. The number of units is a direct functionof the number of rules. KBANN nets have also been shown to be capable of producing lower errors than`vanilla' nets regardless of the number of cycles the vanilla net was trained with. There is also the questionof the structure of the SKBANN network. It only has a single hidden layer and so cannot represent allarbitrary boolean functions. The author believes, however, that extending SKBANN to a multiple hiddenlayered network would be a relatively straingworward task. As a �nal note, this is by no means a completelythourough examination of either KBANN or SKBANN. Whether SKBANN will outperform KBANN or`vanilla net' when there are fewer training examples to work from is still an open question. It is suspectedthat KBANN did not work too well in this experiment because there were (a) not enough rules given, and (b)the rules produced a network that backpropagation had di�culty training (too deep). Since this report wasmostly an exercise in the implementation of ANN's there remains the work of formally linking the behaviourof knowledge-based systems and connectionist systems. That is, most of the ideas presented in this paperwere arrived at by an intuition of the behaviour of simulated neural networks, but a more formal analysis isstill required.13for example [TS92] and [TSN90] 20
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