Iknowledge Based Neural Networks
Testing and Improving the KBANN Algorithm

Tristan Grimmer

December 1995

Abstract

Artificial Neural Networks have a large learning time and fail to capitalize on any domain knowledge.
The KBANN system is an attempt to reduce training time by creating a network that is initially consistent
with the domain knowledge. This network is then trained using backpropagation. For a reasonably simple
domain theory, the networks created by KBANN are relatively shallow (having few layers). When the
domain theory is only relatively complex the depth of the created network becomes large, and the time
required to train this network increases. This problem with KBANN is tested by implementing a system
capable of recognizing simple geometric shapes in a 7x7 array. The KBANN network is compared with
a single hidden layer feed-forward network. Finally, a new, independently invented, system is tested.
This new system, ShallowKBANN, keeps the small number of layers while still using the domain knowledge.
SKBANN is found to outperform both other systems in terms of number of training cycles necessary to
reach maximal generalization of the network. Finally, a suggestion is made on how to incorporate more
domain knowledge into an ANN. Often the rules in a domain theory can have a certainty associated with
them. It may be possible to incorporate this certainty factor into an initial network.

1 Introduction

This report intends to take a critical look at the KBANN algorithm and consider ways of improving it.
The KBANN (Knowledge-Based Artificial Neural Network) algorithm implements a hybrid system. That
is, it 18 an attempt to merge explanation-based learning, which can incorporate prior knowledge, with an
inductive learning method, in this case a neural network. This is desireable since explanation-based learning
requires that the domain theory , in this case our prior knowledge, is sound and in some cases complete (see
[Mit95, Chaper 6]). This knowledge base may not exist in the detail required and may have inconsistencies.
Simulated Neural Networks, on the other hand, do not require this initial domain theory. They are capable
of learning from noisy examples, and generalize well to unseen cases. The problem here, however, is the
large learning time required to train the network.

KBANN is an attempt to reduce this training time and avoid the problems that may be present in the
initial domain thoery. Usually ANN’s have their initial weights and thresholds (unit biases) initialized to
small random values. KBANN, however, creates a network that agrees with the domain theory initially.
That 18, some of the weights and thresholds are set to specific values so that the network reflects the domain
theory. At this point the network is capable of classification in much the same way as a rule based system *.
The KBANN system dictates the entire structure of the neural network: number of units in total, number of
layers, and number of links. The problem is with the number of layers generated (see [TS92]). A relatively
simple set of domain rules can lead to a network that is too deep to be trained effectively with, for example,
the standard back-propagation algorithm ([RHW86]). This scenario is studied by comparing the training
times of a KBANN net versus a simple 1-hidden-layer fully connected net. The number of hidden units of
both networks was normalized to 11 in an attempt at a fair comparison.

I The Incompleteness and possible unsoundness of the domain theory may be handled differently by different ruled based
systems.



As a potential solution to this problem, a third system (ShallowKBANN) is implemented and tested. This
system, which was developed by the author, only has one hidden layer but still manages to use the domain
theory to ‘initialize’ some of it’s hidden units as feature detectors. Those features which are most likely to
be of importance in determining the concept (in this case a shape) are given the largest thresholds and link
weights. This means that the more important features are harder to ‘unlearn’ during the training process,
while the less important ones, which may not even be necessary or correct, would be easily swamped by any
conflicting training examples. That is, the units implementing these ‘less important features’ could easily
converge to recognize a different concept if necessary. The development of SKBANN then leads us to the
possibility of mapping the certainty of rules in the domain base (if these certainties are available) into the
initial network. The validity of this mapping technique, however, has not been tested as it is beyond the
scope of this experiment.

The rest of this report is organized as follows:

e Section 2: A general form of the KBANN algorithm is described.

e Section 3: The domain in which the experiments will be carried out is described. It consists of simple
shapes that exist on a 7x7 grid. The initial domain theory is also introduced in this section.

e Section 4: An initial KBANN network is created using this domain theory.

e Section 5: A description of how to train and test a neural network using back propagation is given.
The network simulator that was used in the experiments is introduced. The training data used in the
shape domain is given as well as the validation data.

e Section 6: Results from training the KBANN network are given.

e Section 7: For comparison purposes, the results from training a standard fully connected neural
network are presented.

e Section 8: The SKBANN algorithm for mapping the domain theory to an initial ANN is described.

e Section 9: Results for the SKBANN algorithm are given. These are compared to the KBANN results
and the standard network results.

e Section 10: The possibility of incorporating the certainty factors of the domain theory rules into the
initial network 1s described.

e Section 11: Conclusions and possible limitations of the algorithms are given.

2 KBANN with Disjunction

KNOWLEDGE BASE RULES
EXAMPLES OF THE CONCEPTS INPUTS WE WISH

WE ARE TRYING TO LEARN TO CLASSIFY

KBANN algorithm translates W )
Initial BACK-PROPAGATION Trained Neural Network
rulesinto an

Neural (can be tested with CLASSIFICATIONS

unseen examples)

algorithm trains

initial neural network Network
the network

Figure 1: The KBANN System



In [Mit95] the KBANN algorithm is briefly described for the case when all the variable free rules in the
knowledge base occur only once (i.e. no disjunction). However, there is a more general form (see [TSN9(]
) that can handle both disjunction and negation. Although the algorithm is always presented as learning a
single concept, it is not too difficult to generalize it to multiple concepts. The most general formulation will
be needed for this experiment. Figure 1 shows a schematic representation of how KBANN is supposed to
work. The back-propagation algorithm for training the neural network is well documented (see for example
[RHWS86]) and will not be described here. The rules-to-network translation, however, is not so well known
and is described in full below.

2.1 Step 1 Mapping the Rules

Basically each unit of the generated neural net corresponds to a predicate. For example, lets suppose we
have the rule:

A« BAC (1)

The network for this rule can be seen in figure 2a. The value ‘w’ beside the links represents the weight
on that link. The value beside unit A is the threshold. If the sum of the inputs and the threshold is greater
than zero then A ‘fires’. That is, the value of A is described by,

A -(2w-wi2) A -(2w-wi2) A -(2w-wi2)
w w w w Wl XY
B c B -Gww2) C B C  notD
Wl N\
D E F G H 1
@ (b) ©
A -w/2
D A
E B C
(d) ©

Figure 2: An Example of KBANN

(2)

Note that this does not accurately depict how a unit works as implemented in a real neural network, but
1s used for illustrative purposes only. As we can see A will only ‘fire’ if both B and C have value 1. Assuming
that the inputs, B and C, are either 0 or 1. This correctly models the rule. There seem to be 2 general
forms for the equation that gives the bias value of unit A. In [TSN90], it is given as —(nw — ¢), where n

A—{ 1 if Bu+Cw— (2w—w/2) >0

0 otherwise



is the number of mandatory antecedents. Phi is a value between zero and w that was found empirically to
work well. This does not make sense. For a value of phi either side of w/2 an assumption is being made
about which way the weights are likely to be modified during back propagation. The direction taken will be
a reflection of the accuracy of the rule. There seems to be no reason to expect, on the majority of the units,
that a weight change will be one way or the other. For this reason, the bias function given in [Mit95] will
be used. Tt is —(nw — w/2), right in the middle. Tt should be noted that the value 3 for w was found, again
empirically, to work well.
Now lets assume a new rule is added:
B+~ DANEAF (3)

The network will now look like figure 2b. As can be seen, it is very easy to add another layer to the
network. Another potential problem is the fact that having many positive antecedents should not make that
rule ‘more important’. Given the assumption that the training method employed ? on the network cannot
make arbitrarily large weight adjustments during a training cycle it can be concluded that the units with
these larger biases and link weights will be harder to modify. This is not desireable.

Now lets use a rule with negation (figure 2c).

A+~ BANCA-D (4)

Nothing really changes except that the weight on the ‘not’ link is set to —w. Since only the mandatory
antecedents are taken into account during the bias calculation no changes are needed. That is, the prohibitory
antecedents ( the ones with the negation ) are ignored. It can be easily verified that the network is still valid
and that ‘D’ must be zero for A to be activated.

To add disjunction to the network some extra units (that do not correspond to a predicate in the rules)
will have to be added. Suppose the following two rules are true:

A« BAC (5)

A« DAE (6)

Then figure 2d shows how this can be handled. The added units, d1 and d2, are what can activate A.
By setting the bias of A to —w/2 we ensure that if any of dy or dy or d3 or ...or d,, fire that A will be above
the threshold and will fire. The units d1, and d2, are then given weights like any other unit.

Finally, dealing with more than one concept that has common antecedents is not a problem. Suppose:

A« BAC (7)
D« BAE (8)

Then all that needs to be done is link A and D to their common antecedent B as in figure 2e. The weights
and biases can be computed in the normal manner.

2Tt is not necessary to use backpropagation. It’s just the norm.



2.2 Step 2 Adding More Units

Since it is possible, and even likely, that there are predicates missing from the knowledge base that are
vital to the determination of a concept, new units must be added to the network. These take the form of
additional input units. For example, in figure 2b the units G, H, and I have been added.

””” Link Added

Link Existed Before

@ (b)

Figure 3: Adding Links

2.3 Step 3 Adding More Links and Perturbing the Network

These new units must be linked in. The most common way to do this is to order each unit according to it’s
maximum path length from an input unit (which corresponds to a predicate with no antecedents). All units
that have the same ‘depth’ are put in a layer. For figure 3b we have:

Unit A Max Path Length (level) 3
Unit C Max Path Length (level) 2
Units dq,d2,B Max Path Length (level) 1
Units D,E,F.G H1,J K Max Path Length (level) 0

Each layer is then fully connected and each added link is assigned a weight of zero. Of course if a link
is present due to the previous rules-to-network mapping then it is left untouched. The ‘bottom’ layer of
units (i.e. the inputs) will contain any added units. These are linked in at this time. Figure 3a shows a
network with the added units but not the added links. Figure 3b shows the same network organized into
layers and linked. The purpose of these added links is simply to facilitate the learning process when the
back-propagation algorithm is applied. They represent extra degrees of freedom in the search for minimal
error. It should be noted that there is now a link between C and B, basically allowing C’s output to depend
on B’s. This makes sense intuitively since B is a more general concept. That is, it is directly influenced by
the inputs. By dropping each unit as close to the inputs as possible we allow each unit to be as general as
possible since it will be used by more units at higher levels.

For a more thorough introduction to KBANN see [TSN90]. The basic idea has been covered so it is now
possible to move on and describe the domain in which the experiments will be carried out.



3 A Domain of Simple Pictures

All the concepts that will be learned in these experiments are simple shapes that live on a 7x7 grid of pixels
that are either off or on. The noise free representations of these shapes are shown in figure 4.

0 L LLT T ]| [ LLLTT]] ooomoog mmm | ] ] ] HEEECEEN HEEECEEN
W W[ OoOmongd || 0m mm_ [ (] OoOmood OOomCmod || 0m
][] [e [ ] [ | | ][ (] ooomoogd omomog [ | |
([ Ooomoog [ | | ELOOO0E OoOmOoogd OomCmod [ | |
OUmCImCc Ooomoog [ | | Oomooomd OoOmOoogd OomCmod [ | |
OmOooCmc] Coomoon [ ]| COomomon Coomonn COmOmcn [ ]| |
I o [ EEEEEEE EEEEEEE OOoOmO0o [ 1 | | |mm] EEECEEN EEECEEN
SHAPE 1 SHAPE 2 SHAPE 3 SHAPE 4 SHAPES SHAPE 6 SHAPE 7

AL [A1z |A13 |Als |AIs |Als |ALT

n2l Az |Azs |Azs |Azs |A2s |A2r

A3L A |A%m |As |ASs |Ass |AST

A6l A2 |Aca |A6t |AGs |AGs |AGT

AL A2 |AT3 |ATa |ATs |ATe |ATT

Coordinate System

Figure 4: The Shape Concepts

The domain theory that will be assumed can be seen in figure 5.

This domain theory is neither complete nor correct. It takes the form of a number of clauses much like
Prolog rules. Note the inclusion of negation of some of the predicates and the inclusion of disjunction in
the form of multiple rules with the same head. As can be easily verified, the rules do capture some of the
important features necessary to each shape. However, 1t is not a complete specification, as not all pixels in
the array are referenced. Furthermore, it can be seen that even if supplied with noise free inputs, a unique
determination of the shape is not possible with the given rules. For example, rule 7 and 8 both have the
same antecedent, so if this antecedent is true then it will not be known whether we are dealing with shape
7 or shape 8.

Not only is it incomplete, but there are errors as well. Rule 5 allows a determination of shape 4 when
it is entirely possible that A34 is on. This conclusion would therefore be incorrect. These problems with
the knowledge base highlight the need to involve a connectionist approach. In the next section a KBANN
network is created using the rules of figure 5, so it is worth while having a close look at the rules.

4 The Shape KBANN Net

The details of working out the KBANN net for the shape knowledge base are not worth repeating. In essence
it was just a mechanical application of the rules given in section 3. Figure 6 shows step 1: mapping the
rules. Note that the weights are set to either plus or minus 6. This larger weight size was necessary due to
the network simulation tool being used. It is suspected that the errors in the floating point arithmetic used
by the simulator are not kept bounded by a constant factor.

The network, after adding the extra units and links, can be seen pictorially in figure 7. This figure shows
the activation level at the bottom of each unit and the unit number on top. As can be seen, unit 59 has a
nonzero activation. This should not be the case. Since the network has not been trained or perturbed by
small random numbers there is no satisfactory explanation for this discrepency. It is highly suspected that
it is a manifestation of floating point error. Perhaps the simulation tool (SNNS is used in this experiment)
divides two near equal numbers causing catastrophic cancellation. It is also, of course, possible that there
is some rather more obvious bug in the simulation software. Regardless, the task of determining the origin
of this error by debugging the source code has proven to be nontrivial and will be left to the creators of the



Top Level Rules (Level 0) Intermediate Level Rules (Level 1)

| r10 B - B A EE
= A22 AA26A AB2 A 1A47 0 Gk G i

| Iesias |
=
Hl

e e R11 i A HH
it it
A i B

ricss | iaeeae!
B « B~ -am R12 5 € AISAALIAATINATS

Base Rules (Level 2)

R13 2 «= A17AATY

mocooon
[

R14 AlInAT1

R15 B « A14~A34

RIS {41 — ABIAATA

Figure 5: The Knowledge Base Rules



B
HHH

EEd
i
i
H
2
£
o
H

AR

AD2 A26 AB2 A4T AB4 AI5 AL7 AT3 A71 AT7 Add A74 Ald A4 A1l A4L A4T

,,,,,,,,,,, Link weight of -6 The numbers by the units represent the unit's bias.
Link weight of +6

Figure 6: The Shape KBANN Net, Step 1



simulation tool (see [MV95]). Figure 7 shows the network recognizing shape 1, which it is capable of doing
correctly given the rule base.

1 ? ] ] 59 &1

2 i . 5 =
lﬁ =

8,008 @, 888_.8 888-’1 888 £, DA, . . @, B
249 [y 2 :

P iﬁ-ﬁé / '
W

B.660 8,060 6,000 0,600 0,000 ©.090 @,060 B.821

Green Links: Weight +6
Red Links: Weight -6
Blue Links: Weight O

Figure 7: The Shape KBANN Net With Added Links And Units

5 Training a Network Using SNNS

SNNS is the Stuttgart Neural Network Simulator. It was downloaded and compiled to run on an Alpha
DEC 3000. Although there are several bugs and missing features in the software, it is general enough to do
everything needed. All simulations will be done using SNNS.

In order to train a network the weights and bias values of all links and units must be perturbed to allow
for symmetry breaking during training ([RHW86]). In this case an ¢ of 0.001 is used. That is, a random value
between 0 and 0.001 is chosen and then either added or subtracted from the weight/bias. A new random
value is chosen for each weight /bias perturbation.

The training process involves supplying the back-propagation algorithm a number of input/output pairs
from the training set. Let the training set have n training examples. Applying the back-propagation
algorithm to each of these examples constitutes what is known as a training cycle®. Usually many cycles
are necessary before the ANN starts to converge. It is the number of cycles that this report is concerned
with reducing. In [MV95] it is also noted that supplying the network with the training pairs in the same
order for each cycle results in a larger number of cycles before the network converges. For this reason the
input/output examples will be randomly shuffled before each cycle. Since SNNS supports this operation it
is trivial to implement.

3The term epoch is also common.



5.1 Stopping Criteria

Next, it 1s necessary to determine a stopping criteria. It is desireable to stop when the network generalizes
best to unseen examples . What can be done is to divide up the training set into an actual training set and
a validation set. This approach is used here. The validation set can be considered the ‘unseen’ test cases.
What may happen can be seen in figure 8.

—~_ Timeto Stop Training
Maximum generalization Reached

Error Validation Set

(MSE)

/ Training Set

Number of Training Cycles (or Epochs)

Figure 8: Stopping Criteria

If training proceeds past the dotted line then the network is being overtrained and is simply specializing
to recognize the shapes it 1s being trained with. The other possibility is that the two sets are related so
closely (even though they contain no input/output pair in common) that the performance just keeps on
improving. If this is the case then the stopping criteria will be a Mean Squared Error (MSE) of the outputs
of below 0.05 °.

The error metric used, as stated above, will be the MSE. The MSE is defined as:

SSE

where N is the total number of samples, k is the number of parameters being estimated, and

N
SSE = ¢ (10)
i=1

The variable e is just the error (the difference between the estimated value and the true value). For example,
suppose we want to know the MSE when 2 validation input/output pairs are supplied to the network. The
data may look something like:

Desired Output Network Output
Pair#1 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0.1 0.8 0.2 0.3 0.0 0.0 0.3 0.4
Pair#2 0.0 0.0 1.0 0.0 0.0 0.00.00.0 | 0.1 0.50.90.10.10.00.20.4

The ‘Desired Output’ column is just the output for that training pair. The ‘Network Output’ contains the

4The SNNS user manual, [MV95], gives a more in depth explanation
5This value was pulled out of thin air and should be customized for the particular domain and task at hand. Some
specifications may allow for larger values than others.

10



values that the network actually returned. For this hypothetical case N = 14 and the SSE will be:

N
SSE =) e?=01+402"+0.27403%...0.2° +0.4% = 0.92 (11)

i=1

In this case & = 7 since there are seven separate parameters that the network must predict each time.
The MSE is therefore given as:
SSE
14 -7

For a thorough discussion of why the MSE is a good error metric for this experiment see [HL87, pages
188-192]. In general the MSE is a better indicator if the sample size, N is large. In our case the validation
set will contain 28 input/output pairs yielding a sample size of 196 (since there are seven units per output).
The value of £ will remain at 7 since there are still only 7 parameters that the neural network is learning.
That is, the seven output units.

MSE = =0.131 (12)

5.2 Training and Validation Data

As explained above, there is a pool of input/output pairs that will be divided into a training set and a
validation set. This initial ‘pool” of values can be seen in figure 9

Ooooooo m OoOom W om ] ] ] ooooom m -] ooooooo m ooooooo W
OmCOomED O [m_minim_wilis] Oml u} u} u} ONOOCED O u] ONCOOmD O ERCOCEE O
OOmCmO0 O OOmOEOD O oo o o o OOmCmO0 O o OOmCmO0 O COmOmOD O
ooomong o ooomo0d O ool g g g Oomo00 O u] ooomo0g o ooomooo O
OomOmO0 O OomoEo0 O oo g g g NOEOO0 O u] OomOmo0 O COomUEoo O
OECOoED O CROOOED O Ol o o o OROOOmD O o ONCOOmD O ERCOCEE O
[ e Oooom O Om o o o [ o Cooom O Ooooooo O
1 2 6 8 9
mmEE O o o o o o o o o
D00 W ] ] ] ] ] - ] -
000 O g g g g g 5] g 5]
000 O g g g g g u] g u]
000 O o o o o o o o o
aufin} o ooomoo0 & o o o o o o
mEE O o OOmmmO0 O o o o o o o
12
o o (T T T T Mm) - O o o o o
u} u} u} [ W O u} u} u] u}
| | | [ 1y | | | - |
u} u} u} [ W O u} u} u] u}
o o o [ m O o o o o
g g g [ m O g g u] g u]
o o o L o o o o o o
E 2
ooomoog o u} u} u} oOomoO0 O u} oOomoOd O u} o
OomOmO0 O g g g OomOEO0 O g OomOEO0 O g u]
oECOOND O u} u} u} oEOO000 O u} oECOOED O u} u]
[ mwmnia N | | | | | mamm N | | ELOmOUE B |
omooomEg O g g g OmoooED O g OmoooED O g 5]
OomOm00 O g g g OUmOEO0 O g OUmCEO0 O g u]
ooomooo 0 o o o ooomooD O o ooomoo0 O o o
28 2 £
OoOwmms O u} mm ] Mul u} OoComeem O u} Oooowmm O u} o
goomooo O g L] g ooom0o0 O g Ooom0o0 O g u]
ooomooo O o o ooomooo 0 o Ooomooo O o o
ooomooo O o o Oooooog o o OoomOoD O o u]
Ooomooo = u u ooomooo = u ooomooo = u H
ooomooo O u} u} ooom0og O u} ooom0og O u} u]
EEEEOO0 O o o ERENOCO O o EEENOCD O o o
a7 41 43

o o o o o o u} o
uf uf uf uf uf uf u} uf
o o o o o o o o
u] u] u] u] u] u] [u} u]
g g g g g g u} g
] ] ] ] ] L} ]
=] =] =] =] =] =] 0 =]
m m O o o m m O u m O m o m m O o
i w0 o o u m O I m O u o u m O o
u W O u] u] u W 0 u O u u] u W O u]
u W 0 uf uf u w0 u m O u uf u m O uf
u w0 uf uf u m O u m O u uf u m O uf
e m O o o u m O e m O u o e m O o
[ ] [ ] [ ] [ ] ] u [ ] =l | [ ]
5 5 E: 59 & 6 &
INPUT
[ —
o
=8k
i
By
=1
2
REFERENCE

NUMBER

Figure 9: Pool of Input/Output Pairs
The pool was divided into a set of 28 validation pairs and 35 training pairs. The reason for more training
pairs 1s because the noise free descriptions of each shape concept were forced into the training set. This makes

sense as we can assume that these are the given concepts that require learning. The remaining 56 pairs were
divided randomly between the training and data sets with the constraint that each set of pairs describing

11



the same shape would be divided evenly between the data and training set®. That is, it is undesireable to,
by chance, put all the examples of a particular shape in only one of the sets. The following table shows the
division. V stands for validation set while T" for training set.

Reference Number | 1 2 3 4 5 6 7 8 9

Set T T Vv Vv T Vv T V T
Reference Number | 10 11 12 13 14 15 16 17 18
Set T T T VvV T VvV VvV T V
Reference Number | 19 20 21 22 23 24 25 26 27
Set T v T T Vv Vv T V T
Reference Number | 28 29 30 31 32 33 34 35 36
Set T v T T T Vv VvV V T
Reference Number | 37 38 39 40 41 42 43 44 45
Set T T T VvV T Vv T V V
Reference Number | 46 47 48 49 50 51 52 53 54
Set T T T VvV T T V V V
Reference Number | 55 56 57 58 59 60 61 62 63
Set T T Vv T T T V V V

6 Training Results: The KBANN Network

Due to the large depth of the network the training did not go as well as expected. The standard backprop-
agation algorithm was used with a learning rate of 0.2. This rate was found by trial and error to work the
best. Figure 10 shows the generated error curve. Figure 11 shows an example of the network failing to
recognize one of the training set examples! It can’t tell whether it is shape 2 or shape 5.

8. 98-
8. 88
8. 78—
8. 668
MSE .58
8. 48—
.38
8. 28

@, 16+

Training set

Validation set

\

T T T
168 260 i)

Training Cycles

T
488

T T T
Sea s Tea 88

Figure 10: Learning Graph KBANN

In order to remedy this situation a ‘new” KBANN net was created with a few more hidden units, in order
to alleviate the apparent bottle-neck before the outputs. Figure 12 shows it’s structure and figure 13 it’s

learning curve.

The improvement 1s negligible. The over-all performance of these deep KBANN networks leaves much to
be desired. As will be seen, a one hidden layer vanilla network outperforms readily.

6The process involved the flipping of a real coin, and resulted in an equal probability of T or V in each position. It was
ensured that the constraint did not skew the distribution.

12



1 z 3 4 5 I3 7

=l
0sE=1. 0005l 0T
1A ]

1. 1. BEE=]
2 2 11 e L3
Iﬂ‘ ==
8,860 3, GO0, BEE-1 . BEESE,

ﬁ 1E é gﬁ!

@|
ol
e}
a

8,000 5, 6 , BAGL . 06l 8,513
4 &4
== |

8,000 0, G007H , BAGL . o6 8, 995 = 8,501
23 L 1 : &5
e ||

8,880 0, G000, Bl , G608 1. oaa 8,437
6 7o s ﬁ

A.AEA A, AEA .BBB"I.-BB . EE a.815
43 441é§5' & &7

1.909 1,000 1600 1008 1.080 1.800 1.008 8.512

Figure 11: Failure of KBANN

)
)

=1

B, BEEE, AERT
17

G008 @, AEE.S1 .
22 3

0. 006 &, 06651, |
23 L

. 008 . 050 L. G600, DEO . 5L
PN rr R ol
i

1,008 1,000 1,800 0,800 1.8688 1.888 O.080 a.81z

Figure 12: New KBANN Net

.98
.38+
8. 78+
8. 68
MSE 8.58+
8. 48—
.38
8. 28
.18+

a. T T T T T T T
Sa 188 158 208 258 206 258 486

Training Cycles

Figure 13: New KBANN Net Learning Curve

13



7 Training Results: The Vanilla Network

In order to be fair about the comparison between the standard KBANN network and a simple one layer
network the same number of units will be used. There were 11 hidden units in the KBANN network, so 11
will be used in the vanilla network (a fully connected network). It should be noted, however, that there is
the real possibility that the number of units as specified by the domain theory may be too few to be able to
generalize to the concepts that need learning 7. It may also be the case that the domain theory divided the
world up into too many small, and perhaps irrelevant, pieces; which would allow the vanilla net to perform
even better. Figures 14 and 15 show the structure and learning curve of the vanilla network. Initially all
weights and thresholds were set to zero (before the mandatory perturbation). The learning rate was found
(empirically) to be most effective at 1.5.

1 H 3 4 5 & 7 i &1
| E e &
L. BEEEL, Bb]. GEE] . 0B 1. G . BBURT, B0 . i . B81
2 16 1 o 3 14 51 2
1. GG, BABEH. HHG ., ARG , A0 . GAa1 . GG Gk 628
15 e 17 1 S o 0 1 =2 3
1, HEGEA » GEEE , EE . LS « D « GRD ] . G| LBl 12 955
22 3 4 5 £, xi g sz % 4
1. GG  BEGER. DHGE . OGO . ARG , GADM] . GG B, DSk aza
29 ) 1 2 = 4 5| 4 7 5
1. GG GGG, BHGR . DHHR , GOt , GAGNE . GG &, 554 . B84
36 7 5 £ 0 1 2] S 3
1. BEESEA . HEGEE. HHC . DHHD . ACb g . g . GG . BEZ .B13
<] 4 3 7 3| 9| ¥4 7
1. GEE1, ABA<], GAGR1 . BRG] . ABAS] . BEGET . AaG L e, .38
73

Lower numbers are activation amounts

Figure 14: Trained Vanilla Network

8. 45
. 48|
@. 35+ Training set
. 38
MSE @, 254 Validation set
. 26|
8. 15
8. 18-
8. 85|

a. T T T T T T T
=] 1@ 13 28 23 28 jei=] 48

Training Cycles

Figure 15: Vanilla Network Training Curve

As can be seen the network is able to correctly identify any shape from the validation set. And it

7This is likely what happened in our case

14



managed an MSE of under 0.05 for both data sets in under 40 training cycles. For many tasks, however, a
fully connected network using Back-Propagation can be improved upon readily®. The question becomes can
our rule based knowledge be encoded into a shallow neural network?

8 The SKBANN Algorithm

8.1 Main Assumptions

The SKBANN Algorithm is a method for translating the domain knowledge into an initial neural network in
much the same way as KBANN. The domain knowledge must take the form of ‘Prolog-like’ rules (variable
free) , just as with KBANN. The structure of a SKBANN network is the same as a single hidden layer fully
connected network, as with our ‘vanilla’ network. The difference is that some of the links from the inputs
to the hidden layer will have specific weights and the some of the hidden units will have specific thresholds.
That is, some of the hidden units will be initialized to recognize certain tmportant features of the input.
Central to the developement of SKBANN are the following assumptions:

1. Rules in the database that are used® often have a high degree of confidence!® associated with them.
2. Rules that are used closer to the concepts being learned are more important.

To explain these assumptions assume the following domain knowledge exists:

r:A«DANC
rn: B+« CAE
ra: D« FANG
rg . F— HANIT

rs :G— JANK
r¢ :C—LAM
r7  BE+—~ NANO

Also presume that the concepts being learned are A and B. These rules can been seen in a tree in figure 16.

A B
D c E
/R G L M N O
Hl JK
Figure 16: A tree of rules

As an example of assumption 1, There is more confidence in rule rg than in, say, rule r7. This i1s because,
as can be seen in the tree, (' 1s used twice while while £ only once. It should be noted that even if rule r;

8 Consider, for example, feature detectors and time-delay neural nets.
?That is, the heads of these rules occur as either mandatory or prohibatory antecedants of other rules.
10 A measure of how likely it is that the rule is actually valid for the domain.

15



was A + D A= it would not affect the confidence in rg. It 1s the fact that the rule was used at all that is
important, not whether the negation was used or not.

As an example of the second assumption, rule r7 is more important than both rules r4 and r5. This is
because it occurs at a lower level. That is, it has much more direct effect on the concepts we are trying to
learn.

These assumptions are just that, assumptions. For certain domains they may hold while for others they
may not. For example, the assumptions probably would hold for the rules that doctors use in diagnosing
patients. A rule that is relied on heavily (i.e. is used a lot) will have a high degree of confidence associated
with it. The rule simply would not have survived as long as it did if this were not the case. For example,
the rule:

Conscious + Talking A Hand-is-Moving

is probably a pretty safe bet, and in diagnosing a patient this sort of rule would be used all the time.
The second assumption would also hold in this domain. If we are trying to tell if the patient is conscious
then the rule:

Talking + Mouth-moving A Word-sounds-present

1s more important than some obscure rule many layers deep. These assumptions will be presumed to
hold in the shape domain of this experiment. The SKBANN method uses the notion of strength to initialize
the weights and thresholds of some of the hidden units. A unit with more strength is one in which it is
harder for the backpropagation algorithm to ‘untrain’. That is, units that require large changes to their link
weights and thresholds before giving substantially different responses are stronger. In SKBANN, units with
high confidence and importance values will be stronger. With the assumptions and terms now defined, the
SKBANN algorithm will now be introduced and applied to the shape rules given in figure 5.

8.2 Applying Shallow kBANN

It is assumed that the antecedents of each shape rule (rules 1 to 9) are important for the neural net to learn
because if it can learn these it will be well on it’s way to recognizing the shape (or concept, if this algorithm
will be applied more generally). The importance of each rule can now be determined. Imagine a layering
system where the most important concepts are placed at the bottom (call this layer zero). Of all 14 concepts
given by the rules (figure 5) the most important are the ones we are trying to learn (i.e. the 7 concepts
labeled shape 1 to shape 7). Clearly any concept that directly affects rule 1 to rule 9 will also be of fairly
high importance. These shapes are the heads of rules 10 to 12 (The intermediate level rules in figure 5).
Basically, it is desireable to let each rule ‘fall’ as much as possible towards ground zero. It may be asked why
rule 13 is at layer 2 while rule 12 is at layer 1. The answer is that the head of 13 is one of the antecedents of
a rule in layer 1. That is, rule 11 incorporates the importance of 13. Rule 12, however, is capable of ‘falling’
to one above zero since none of it’s antecedents are heads of a rule in the same or lower level. In summary,
level zero depends on levels 1, 2, and 3 (letting 3 be the inputs). Level 1 depends on levels 2 and 3. And
level 2 depends only on level 3. Just put each rule as low as possible while maintaining these dependencies
LTt may also be helpful to draw the tree of rules as shown in the previous section.

Now that we have some notion of the importance, the confidence can be worked out: The more times a
concept is used the more vital it is (and therefore the more vital the rule that describes it). Note that it
does not matter if the negation is used. It’s the fact that it was referenced at all that adds to it’s confidence.
So, for an overall strength level we get:

I=alefl) (13)

I The method described here generalizes easily to more rules and more layers

16



where I is the strength, ¢ is number of times 1t’s used, 1 is the level, and « is a constant of proportionality.
For this experiment « will be set to 1. It may also be desireable to add a constant to ¢, giving the ability to
control how much ‘default weight’ is given to the confidence rating.

NUMBER | Negative of Bias Atomic Predicates Weight on each
CONCEPT LEVEL OCCUR (I -wi2) link to that predicate
FEEgEE
e mas) 1 2 2/1-2/8 =14/8 Al4 A34 A54 AT4 2/4
BooRts
g
Hasese 1 2 2/1-2/8= 14/8 Al17 A77 All A71 2/4
Hasast
FEEEeee
BREEEER 1 5 5/1-5/8= 35/8 A15 A17 A71 AT3 5/4
e=at i)
[eemamst
i
E@@@@@@ 2 2 2/2-14=3/4 A1l A71 172
FEEEEEg
BaAe 2 1 1/2-1/8=3/8 Al17 AT7 v4
Bo5oE
Hass)
e ssa st 2 2
B 2/2-14=3/4 Al4 A34 12
aais)
et
FeEEE
E@EE@EE 2 1 1/2-1/8=3/8 A54 A74 14

Figure 17: SKBANN (handi-capped) Weight and Bias Values

Now that the strength of each rule is known, we can map each rule to a hidden unit of the network. Each
hidden unit will basically implement the corresponding rule. Since, in this case, there are more hidden units
than shapes being learned we could simply make each hidden unit of the network ‘recognize’ a particular
shape. This approach, although it works for this problem, may not be applicable if there are more concepts
to learn than hidden units permitted. It has been decided to handi-capSKBANN 12 in this experiment
so that it is not allowed to map any of the 7 (level 0) rules directly into 7 hidden units. In fact, if there are
more hidden units than concepts to learn then there is no need for the importance or confidence ratings. All
that would need to be done is find the atomic predicates (inputs), assign weights of w to those links, and
assign a threshold of —(nw — w/2) to that unit (where n is the number of atomic predicates).

In general, if there are more concepts than hidden units then the rules would be ordered by strength
and the highest m rules would be mapped to the network; where m is the desired number of hidden units.
If a network with more hidden units than concepts is desired (like in our case of 7 concepts because of the
handi-cap) then additional weight zero /bias zero units can be added. For this experiment 11 hidden units
are desired so 4 units will have threshold zero.

Now, what makes a rule stronger in terms of the actual network? Well, a unit with higher strength will
not be affected as easily by changes in the weights of it’s input links or it’s threshold. This reminds us of
having larger thresholds and input link weights ( a variation in weight of threshold will affect such a unit
less).

Since there will only be one hidden layer of units, the rule that the hidden unit is supposed to implement
will have to be expressed in terms of the 49 inputs. This is just a case of finding out what all the atomic

12Sff BANN is suspected to work extremely well for this domain if we didn't.

17



predicates of each concept are. For example, the concept that is the head of rule 11 has atomic predicates
Al17, A77, A11, and AT1.

Finally a formula can be given for the weights of the input links (from the base dependencies, or inputs)
to a hidden unit:

w=1/n (14)

where I is the strength of the unit being connected to and n is the number of base dependencies.
This yields the same ‘midpoint’ equation for the unit’s threshold:

t=—(I—w/2) (15)

Figure 17 shows a table of what is being done.

9 Training Results: The SKBANN Network

Figure 18 shows the network that was created after it was trained with learning parameter 1.5 (same as
vanilla). The first 7 hidden units correspond , in order, to the 7 concepts in table 17. Figure 19 shows the
learning curve. As hoped, the network converges faster! Note that the SKBANN plot was placed directly
on top of the old Vanilla training curve so an easy comparison can be made. Although no research has
been done into expanding the SKBANN algorithm to multiple hidden layers, I believe it is not difficult to
accomplish. The hard question would be ‘when is an expansion to more layers required?’ not ‘How do we do
1t?” Another possible variation to SKBANN would be to weight occurances of a concept more if they occur
in lower levels. That is, if one counts b occurances in level 1 it should be more significant than 5 occurances
in level 8.

An test example from
the validation set works well.

B. 263

Figure 18: Trained SKBANN Net in Operation

18



MSE

_— Vanilla FF network

20 /
154

SKBANN

LB~ B I R R I v B R 1)
L)
T

Number Training Cycles

Figure 19: SKBANN Learning Curve

9.1 A Quick Look at the Hidden Units

1.000 1.6808 1,800

6,000 0,600 5,660

B.000 0000 G000

@ @008 0,600

=
o
=

o)

|
H

.88

)

680 0, 088

®

BE0 8608 0,660

1,006 1,600 1,660

First Trained Net

1.008 1.008 1.808 1.060 B.994 0. @86 1.800 1.080 1.600 1.008 1.6600 1.008 1,680
1.000 8,008 B.606 0.660 B.623 5. 581 B.080 ©.008 0,008 1.500 0.980 0.000 8,000
1.000 @,008 0,880 ©.008 1.888 2.916 EGBB !992 EBGG 1.00 b.000 @.008 !999
1.000 @, 008 !@BB EGEB 0,974 !BGS EBW EBBB EBBB 1.008 B.200 EBEB EBBE
1.008 @000 E@BB EBBB EBBI EBIZ !BBB EBBB EBBB 1.6008 8,880 !BEB EBBE
1.008 8,008 EBBB z..zzz B.542 z.ng A.860 0.808 0.008 1.500 A.088 EBBB EBBB
1.008 1.008 1.606 1.980 EBBS 5. Baa 1.800 1,000 1.000 1.008 1.800 1.088 1,000

!BBS

m Second Trained Net

EBBS

B.649

@.991

B.534

1.800

8,614

B.926

8,966

In order to confirm suspicions that the weaker (less strong) units may converge to different concepts, a
number of SKBANN networks were trained. In figure 20 we see two of them recognizing the same ‘I’ shape.
As can be seen, the third hidden unit (which is activated) can not get out of recognizing it’s respective
concept. This is because it is relatively strong (a weight of 5/4). However, the fourth hidden unit (which
recognizes the two left most corner inputs A1l and A71), and similarly the fifth, have opposite activations
in each network. This is because, during training, they specialized to somthing other than what they were
initialized to. This makes sense as they were weaker, having weights of 1/2 and 1/4.

Figure 20: Two Separately Trained SKBANN Networks

10 Incorporating More Domain Knowledge: Rule Certainty

This sectoin, very briefly introduces the possibility of mapping the certainty rating of a rule into an initial
neural network. In some cases a measure of the confidence that a certain rule is correct (or incorrect) may

19




\
0 w 2w T 3w

T: threshold value with highest strength.

Figure 21: Threshold position with respect to link weights

be available. In [PMG95] the confidence is defined as a value ranging from —1 (known false) to +1 (known
true) with 0 being no idea of the correctness of the rule. If a rule has a confidence level of +1 then it’s
corresponding unit should have it’s threshold in a position yielding the highest strength.

Figure 21 shows the case when there are 3 antecedants in the rule. Each link gets weight w and the
threshold will be set to (2w 4+ w/2) if there is a certainty factor of 1 associated with it. As the certainty
factor gets closer to —1 the threshold will have to be placed further away from the midpoint. A certainty of
0 should coincide with one of the interfaces (that is, threshold values of either 2w or 3w in the diagram). If
the rule is known to be false, then the threshold could be assigned a value larger than 3w or less than 2w.
Some sort of curve would have to be fit to map the certainty to the distance away from the midpoint.. If
the curve was linear then a certainty of —1 would map to 3w/2 or Tw/2. The question for further discussion
is on which side of the midpoint should 1t be placed. The author wonders how a network that randomly
chooses which side would perform.

11 Conclusions

This report communicated a set of experiments with Artificial Neural Networks. The applicability of the
KBANN algorithm was studied and a new system which avoids producing large numbers of hidden layers
was tested. The new system outperformed both a vanilla back-propagation feed forward network and the
KBANN network. The domain, although artificial, serves to demonstrate that applications do exist where the
SKBANN algorithm outperforms the others. However, the general applicability of the SKBANN system has
not been explored fully. One rather significant failing in SKBANN is that it fails to specify unambiguously
how many hidden units should be used. It is this determination that can affect drastically the performance
of a neural network. That is, too many units cause too many degrees of freedom and the network will not
generalize well, while too few units and the network may be incapable of representing the necessary concepts
and so will be impossible to train (see [Win92, pages 464-469] for a full discussion of this phenomanon). The
KBANN system, however, fully specifies the structure of the network, and many researchers '3 claim that
this 18 why KBANN networks are capable of generalizing so well. The number of units is a direct function
of the number of rules. KBANN nets have also been shown to be capable of producing lower errors than
‘vanilla’ nets regardless of the number of cycles the vanilla net was trained with. There is also the question
of the structure of the SKBANN network. It only has a single hidden layer and so cannot represent all
arbitrary boolean functions. The author believes, however, that extending SKBANN to a multiple hidden
layered network would be a relatively straingworward task. As a final note, this is by no means a completely
thourough examination of either KBANN or SKBANN. Whether SKBANN will outperform KBANN or
‘vanilla net” when there are fewer training examples to work from is still an open question. It is suspected
that KBANN did not work too well in this experiment because there were (a) not enough rules given, and (b)
the rules produced a network that backpropagation had difficulty training (too deep). Since this report was
mostly an exercise in the implementation of ANN’s there remains the work of formally linking the behaviour
of knowledge-based systems and connectionist systems. That is, most of the ideas presented in this paper
were arrived at by an intuition of the behaviour of simulated neural networks, but a more formal analysis 1s
still required.

13 for example [TS92] and [TSN90]

20



References

[HL87]

[Mit95]
[MV95]

[PMGO5]

[RHWS6]

[TS92]

[TSN90]

[Win92]

Robert V. Hogg and Johannes Ledolter. Engineering Statistics. 1987, Macmillan Publishing Com-
pany.

Tom M. Mitchell. Machine Learning. 1995, McGraw-Hill.

Andreas Zell, Gunter Mamier, et al. Stuttgart Neural Network Simulator User Manual V4.0.,
1995, Unpublished.

David L. Poole, Alan K. Macworth, Randy G. Goebel. Computational Intelligence. 1995, Unpub-
lished.

D. E. Rumelhart, G.E. Hinton, R.J. Williams. Learning Internal Representations by error propa-
gation. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition. pages

318-363, 1986, MIT Press.

Geoffery G. Towell and Jude W. Shavlik. Using Symbolic Learning to Improve Knowledge-Based
Neural Networks. In Proceedings of the Tenth National Conference on Artificial Intelligence,
pages 177-182, San Jose, California, July 1992. AAAT Press.

Geoffery G. Towell, Jude W. Shavlik, and Michiel O. Noordewier. Refinement of Approximate
Domain Theories by Knowledge-Based Neural Networks. In Proceedings of the Eighth National
Conference on Artificial Intelligence, pages 861-866, July 1990, AAAT Press.

Patrick H. Winston. Artificial Intelligence. 1992, Addison-Wesley.

21



